ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. Ломоносова»

Физический факультет

Кафедра молекулярных процессов и экстремальных состояний вещества



Бакалаврская работа

# Турбулентность в пограничном слое за плоской ударной волной

Выполнил студент 404 группы Ши Линь

Научный руководитель доцен

доцент Мурсенкова И.В.

# Актуальность исследования

Большинство течений жидкостей, газов и плазмы в природе, на обтекаемой поверхности и в технических устройствах являются турбулентными. Интерес к изучению турбулентности определяется её важностью с точки зрения получения фундаментальных данных о механизмах развития неустойчивостей в потоках и большим прикладным значением. Состояние турбулентного пограничного слоя существенно влияет на аэродинамические и тепловые характеристики сверхзвуковых летательных аппаратов.

**Турбулентность** - явление, наблюдаемое во многих течениях жидкостей и газов и заключающееся в том, что в течениях образуются многочисленные вихри различных размеров, вследствие чего их гидродинамические и термодинамические характеристики испытывают хаотические флуктуации и потому изменяются от точки к точке и во времени нерегулярно.



Сверхзвуковой самолет МИГ-21. http://www.turplace.ru/stati-2-2/pochemu-grazhdanskie-samolety-ne-letayut-na-sverkhzvukovykh-skor

#### Число Рейнольдса

 $Re = \frac{\rho v L}{\mu}$ 



Прямое численное моделирование перехода к турбулентности в сверхзвуковом пограничном слое при числах Maxa 2 и 6 http://tsagi.ru/pressroom/events/seminars/videoseminar-aeromekh/14.02.2017

# Цель работы

Анализ <u>масштабов турбулентных структур</u> в пограничном слое сверхзвуковых потоков за плоскими ударными волнами на основе статистической программной обработки фотоизображений свечения наносекундного поверхностного скользящего разряда.



# Пограничный слой

Тонкий слой на поверхности обтекаемого тела, который характеризуется сильным градиентом скорости потока: скорость меняется от нулевой на поверхности тела до скорости потока вне пограничного слоя.



 $\delta \propto \sqrt{\frac{\mu l}{\rho U}}$ 

- l характерная длина  $\rho$  – плотность в потоке
- µ динамическая вязкость
- U скорость набегающего газа

#### Средние величины и пульсации

 Определение осредненного движения зависит от выбранного способа осреднения:

по времени по пространству по ансамблю по фазе

- Таким образом турбулентное течение можно разделить осредненную (детерминированную) и пульсационную составляющие  $u \stackrel{\frown}{=} u \stackrel{\frown}{=} u + u' \longleftarrow$
- Турбулентные течения, у которых осредненная составляющая не зависит от времени, называют стационарными

Структура пограничного слоя (на плоскости):

- 1 ламинарный гидродинамический пограничный слой;
- 2 переходное течение;
- 3 турбулентный пограничный слой;
- 4 эпюры скоростей;
- I пограничный слой; II основной поток;
- *w<sub>н</sub>* скорость набегающего потока;
- δ<sub>лам</sub>, δ <sub>турб</sub> толщина ламинарного и турбулентного пограничных слоев;
- *x<sub>к1</sub>* длина участка ламинарного пограничного слоя;
- *x*<sub>*к2*</sub> участок перехода к турбулентному пограничному слою;
- $\delta_{B\Pi}$ , толщина ламинарного подслоя

https://studme.org/269505/tehnika/pogranichnyy\_sloy

https://slide-share.ru/turbulentnoe-techenie-217171

# Формирование турбулентности в пограничном слое

#### Численное моделирование



Структура течения за ударной волной в канале; 1 – фронт ударной волны, 2 – контактная поверхность, 3 – роликовые вихри (roller), 4 – шпильки (hairpin, hairpin forest); х = 0 соответствует фронту ударной волны. Скорость УВ 675 м/с.

A. Kiverin and I. Yakovenko, "Evolution of wave patterns and temperature field in shock-tube flow," Physical Review Fluids, vol. 3, no. 5, p. 053201, 2018.

# Сценарий перехода к турбулентности в пограничном слое

1 потеря устойчивости, появление волн Толлмина-Шлихтинга

- 2 появление двумерных вихрей
- 3 развал на трехмерные структуры
- 4 появление турбулентных пятен
- 5 полностью турбулентное течение

# Турбулентность в пограничном слое

Экспериментальные исследования: метод цифровой трассерной анемометрии (PIV, Particle Image Velocimetry)



Большинство **вихревых структур** сосредоточено вблизи низкоскоростных зон.



Индивидуальные вихри

G.E. ELSINGA, R.J. ADRIAN, B.W. VAN OUDHEUSDEN, F. SCARANO. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer (PIV). 2010.

Для <u>исследования турбулентной структуры пограничного слоя</u> сверхзвукового потока за ударной волной обрабатывались фотоизображения свечения наносекундного распределенного поверхностного скользящего разряда.

## Экспериментальная установка

## Ударная труба с разрядной камерой



#### Параметры потоков воздуха

- давление 5-400 Торр
- числа Маха ударных волн до 5
- числа Маха потока до 1,7
- скорость потока до 1600 м/с

- число Рейнольдса ~10<sup>5</sup>
- толщина пограничного слоя до 2 мм
- длительность спутного потока ~ 300 мкс
- сечение канала 24×48 мм<sup>2</sup>

#### Параметры разряда:

- напряжение 20-25 кВ
- ток ~ 1 кА
- длительность тока ~ 300 нс
- приведенное поле *E/N* ~200-1000 Тд
- толщина плазменного слоя ~0,5 мм
- область разряда 100×30 мм<sup>2</sup>

# Экспериментальные условия

#### Схема течения в канале ударной трубы



1 – фронт ударной волны, 2 – контактная поверхность, 3 – область поверхностного разряда, 4 – стекла, 5 – электроды разряда. Стрелкой показано направление потока.

И.А. Знаменская, Д.Ф. Латфуллин, И.В. Мурсенкова. Ламинарно-турбулентный переход в сверхзвуковом пограничном слое при инициировании импульсного поверхностного разряда. Письма в ЖТФ, 34 (15), 2008.

#### Изображения свечения разряда



Фотографии свечения разряда в разрядной камере в неподвижном воздухе (а), в сверхзвуковых потоках в ламинарном (б) и турбулентном (в) пограничном слое. Стрелкой показано направление потока.

Mursenkova I.V., Znamenskaya I.A. and Lutsky A.E. Influence of shock waves from plasma actuators on transonic and supersonic airflow. J. Phys. D: Appl. Phys., 2018. Vol. 51, No 5. 105201.



Изображения свечения разряда в 1 серии экспериментов при  $\Delta X$ =12 и 21 см. Прямоугольниками выделены области обработки.

#### Экспериментальные условия

|   | $M_0$     | Мп   | р1<br>(торр) | ρ <sub>1</sub><br>(кг/м <sup>3</sup> ) | ρ <sub>2</sub><br>(кг/м <sup>3</sup> ) | Re<br>(·10 <sup>5</sup> ) | ΔХ,<br>см |
|---|-----------|------|--------------|----------------------------------------|----------------------------------------|---------------------------|-----------|
| 1 | 2,38-2,44 | 1.17 | 33           | 0.056                                  | 0.18                                   | 2.56                      | 3-28      |
| 2 | 3,6-3,72  | 1.52 | 15           | 0.025                                  | 0.11                                   | 2.58                      | 6-22      |
| 3 | 4,17-4,48 | 1.59 | 7.6          | 0.013                                  | 0.06                                   | 1.54                      | 29-36     |

М<sub>0</sub> – число Маха исходной ударной волны

М<sub>п</sub> – число Маха потока за ударной волной

р<sub>1</sub>, ρ<sub>1</sub> – давление и плотность перед фронтом исходной ударной волны

- $\rho_2$  плотность в потоке за фронтом исходной ударной волны
- $\operatorname{Re} = \rho_2 \cdot u_2 \cdot d/\mu_2$  число Рейнольдса потока (d приведенный диаметр канала),
- $\Delta X$  расстояние от фронта ударной волны до области регистрации свечения



Результат сканирования свечения разряда по направлению потока в программе, написанной в среде Matlab.

# Программа обработки изображений свечения разряда

Программа выполняла <u>сканирование фотоизображений</u> и <u>преобразование</u> интенсивности <u>в спектр Фурье</u>. Были получены и обработаны распределения свечения разряда в двух направлениях: по направлению потока и перпендикулярно потоку. Затем проводился выбор значимых частот в спектре.



# Анализ экспериментальных изображений

1 серия экспериментов

число Маха ударной волны 2,4, число Маха потока 1.17



# Обработка экспериментальных изображений



оригинальное изображение свечения разряда



модифицированное изображение



Спектр Фурье распределения интенсивности свечения разряда (зависимость амплитуды от обратной длины); 1 серия экспериментов,  $\Delta X=28$  см. (По направлению потока.)

## Гистограммы распределения частот

#### 1 серия экспериментов

Присутствуют одинаковые частоты для поперечного и продольного направления сканирования



Гистограммы распределения частот (обратного линейного размера) при ΔX = 12 см (а), 14 см (б), ΔX = 21 см (в) и 25 см (г). Число Маха потока 1.17. . Синим цветом показаны результаты сканирования по направлению потока, коричневым – в перпендикулярном потоку направлении.

## Гистограммы распределения частот

#### 2 серия экспериментов



Гистограммы распределения частот при ΔX= 6.6 см (а), 9.1 см (б), 11.6 см (в) , 14.2 см (г) и 21.7 см (д). Число Маха потока 1.52.

# Гистограммы распределения частот

#### З серия экспериментов



Гистограммы распределения частот при Δ X=29 см (а), 32 см (б) и 36 см (в). Число Маха потока 1.59.

# Выводы

- Проведен анализ фотоизображений свечения распределенного наносекундного поверхностного скользящего разряда в сверхзвуковых потоках воздуха с числами Маха 1.17-1,59 и плотностью 0.06-0.18 кг/м<sup>3</sup> за плоскими ударными волнами с числами Маха 2.38-4.48 в канале ударной трубы.
- 2. Написана программа обработки фотоизображений свечения разряда, включающая сканирование интенсивности в плоскости изображения в двух направлениях, Фурье- преобразование полученных зависимостей и поиск значимых пространственных частот. Разработанный математический аппарат использован для описания турбулентной структуры различных стадий течения в пограничном слое за фронтом плоской ударной волны.
- 3. Определены характерные масштабы турбулентных структур в пограничном слое, связанные с масштабами структурных элементов поля свечения разряда, которые в направлении потока могут достигать 1.7-5.9 мм.
- Показано, что характер развития турбулентности в пограничном слое при разных экспериментальных условиях имеет общие черты. В начале турбулентной области наблюдается большое число структур близких масштабов.
  В области развитой турбулентности количество типов структур уменьшается, усиливаются низкие пространственные частоты, соответствующие структурам большого масштаба.

# СПАСИБО за внимание!